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Thermodynamics of the conversion of diluted radiation 

P T Landsberg and G Tonge 
Department of Mathematics, University of Southampton, Southampton SO9 SNH, UK 

Received 10 July 1978, in final form 14 September 1978 

Abstract. The photon density in diluted black-body radiation is E ( O <  E < 1 )  times that for 
the black-body radiation at temperature T from which it originated. If U is Stefan's 
constant and B is a geometrical factor, it is shown that the energy and entropy flux due to 
such radiation is 

@ = B E u T ~ / T  V = $ E X ( E ) U T ~ / X  ( X ( l ) =  1 )  

where X ( E )  is a function calculated here for the first time. A special type of steady-state 
non-equilibrium situation is defined, and called effectice equilibrium, for which the effectice 
temperatures T / X ( E )  = T* of the various components of a system are equal. In this state the 
system cannot yield work. The maximum efficiency TJ" of such systems is investigated. 

The application to solar radiation (diffuse and direct) proves possible and involves the 
function 

A(x)=1- '  3x + 1  3x ' 

In  order to allow for diffuse and direct radiation the calculation is somewhat more 
complicated than previous ones. It shows that, for a black absorber, TJ,-0.7 (diffuse) rises 
to 0.93 as the radiation becomes more direct. However, for a grey absorber the efficiency 
might range typically from 60% to 83% for absorptivity a = 0.9. For one pump p and a 
black absorber at ambient temperature T, 

1. Introduction 

The thermodynamically permitted efficiencies of solar energy conversion, although too 
high to be attained in realistic applications, are nevertheless of interest. They are 
estimated in this paper for conversion into work of direct and of diffuse radiation, and of 
a combination of the two. The latter possibility means (more abstractly) that the 
process is driven by two 'pumps'. It is not much more difficult to set up balance 
equations for ~t pumps, and to allow in addition the transfer of heat from the system of 
interest to a sink. It has proved convenient to introduce the new concept of an eflectiue 
temperature (equation (2.13)). Its equality for the sink and for all the pumps is taken to 
define in part what is here called effective equilibrium, a condition which implies that no 
work can be extracted from the system. 

The present paper develops further the results of the authors cited in the references 
(other than Bateman). 
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2. Entropy and energy of diluted black-body radiation 

Diluted unpolarised black-body radiation is defined by the photon number n ( e ,  v, T )  
per unit volume per unit frequency range 

n ( ~ ,  v, T )  = 8rrv*~c-~(exp(hv/KT) - 1 l - I  ( O < E S I )  (2.1) 

where E is a ‘dilution factor’ (independent of frequency) of the radiation, and T is the 
‘undiluted’ temperature. The appropriate spectral radiance, i.e. the spectral radiant 
power emitted from a surface per unit area of that surface per unit solid angle, is 

K(E,  v, T) = chun(c, v, T)/477. (2.2) 

The spectral entropy density, which corresponds to the spectral energy density 
hvn(E, v, T),  is 

S ( E ,  v , ~ ) = 8 r r v * k [ ( l + x ) l n ( l + x ) - x  1nx]/c3. (2.3) 

x E X ( € ,  v, T )  = c Z K ( e ,  v, T)/2hv3 = E(exp(hv/kT) - I)-‘ (2.4) 

Here 

and is the number of photons per unit volume of space and per unit volume of 
wavevector space per unit frequency range. The spectral entropy power emitted from a 
surface per unit area per unit solid angle corresponds to (2.2) and is 

(2.5) L(E,  U ,  T )  = C S ( E ,  v, T)/4rr. 

These results can be obtained from pages 294-7 of Landsberg (1961). 
These formulae will be applied to an isotropic emitter which also absorbs radiation 

from a distant source. In both cases they have to be integrated over frequencies and 
over solid angles w.  The latter integration extends over a hemisphere for emission, and 
over the solid angle subtended by the source at the absorber for absorption. Thus the 
radiant power emitted from, or absorbed by, a surface per unit area is 

a( E ,  T) = j j K ( E ,  Y, T) cos 8 dv dw = B K(E,  v, T) dv (2.6) I 
where is the angle made by rays with the normal to the surface and 

B =  COS Bdw. I 
Substituting from (2.2), 

@ ( E ,  T )  = BmT4/7r (2.7) 

where U is Stefan’s constant. The normal black-body emission formula is obtained for 
emission over a hemisphere ( B = T )  and for € = I .  The analogous entropy power 
emitted or absorbed by a surface per unit area is 

* ( e ,  T) = jj L(r ,  v, T )  cos 8 dv d o  = B L(E,  U ,  T )  dv. (2.8’) I 
Using (2.5), a more radical modification of the black-body result is found: 

* ( E ,  T )  = i B m X ( ~ ) T ~ / r r ,  (2.8) 
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where, with x = €(e'  - l)-' 
c =  

If E = 1, (2.9) represents an integration sometimes performed for black-body radiation 
to yield unity: 

X(1 )  = 1. (2.10) 

The energy U(€, T, V) of diluted black-body radiation in a reflecting enclosure of 
The evaluation of the integral in (2.9) is given in appendix 2. 

volume V is from (2.1). 

U(€, T, V) = V hvn(c, v, T) dv = 4eVuT4/c. (2.11) illX 
Similarly, by integrating (2.3) the entropy of diluted black-body radiation in this 
enclosure is 

(2.12) 

An effective temperature T* will now be introduced for diluted black-body radiation, 
and is defined by 

S ( E ,  T, V) = ~ E X ( E )  VuT3/c. 

(2.13) 

I t  is found (figure 1) that dilution lowers the effective temperature from T* = T a t  E = 1. 
The 'temperature' defined here does not refer to an equilibrium situation since the 
different spectral components of diluted black-body radiation have different (absolute) 
temperatures, except when E = 1, which corresponds to black-body (equilibrium) 

F 

Figure I. Increasing dilution (smaller e )  leads to a fall in the effective temperature T*. 
Theoretical curve based on (2.13) and appendix 2. 
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radiation. From (2.7), (2.8) and (2.13) 

1 &'(E, T )  X ( E )  -=( ) =-- 
T* a @ ( ~ ,  T )  e T 

(2.14) 

associates an effective temperature with the flux of diluted black-body radiation across 
a surface. 

3. Balance equations for an absorber-emitter of diluted black-body radiation 

The rates of change in the energy and entropy of the absorber (-emitter) are, with all 
quantities referred to unit area of its surface, 

E=@pa-Q-@s-  w (3.1) 

S ='Ppa-(Q/T)- 'Ps+Sg.  (3.2) 

Here @pa and $pa are rates of energy and entropy absorbed from the pumps, i.e. from the 
energy sources; Q is the rate of transfer of heat across the boundary (of the absorber) to 
the ambient, both of which are assumed to be at temperature T ;  QS and & are the rates 
of energy and entropy emission by the absorber to a sink; & is the rate of mechanical, 
chemical or other work performed. Since the absorber has no moving parts, it is 
conceptually clearest to suppose that F.i/ is the rate at which energy is passed by the 
absorber to a separate 100% efficient mechanism which then converts this energy into 
the type of work considered. S,  is the rate of entropy generation in the absorber. The 
conduction of heat Q may be regarded as due to an infinitesimal temperature excess of 
the absorber surface above the ambient. Elimination of Q leads to 

W = aPa - ~ 9 ~ ~ -  (os- T V ~ , )  - TS, (3.3) 

when the absorber is in a steady state. 
While this framework is rather general, we shall in this paper interpret @, and Vrs as 

referring to diluted black-body radiation emitted to the ambient, which therefore acts 
as the sink. If there are n pumps pl, . . . , pn, then 

@ p a  = @pia + @p2a + * * . + @pna. 

If the quantities distinguished by suffixes 

(3.4) 

j = p l ,  . . . , pn; pla ,  . . . , pna;  s (3.5) 

all refer to diluted black-body radiation, then effective temperatures (2.14) 

can be introduced for them. The suffices p l ,  p2, etc (which will be required for the 
efficiency (6.9)) apply to the diluted black-body radiation of the pumps, while pla ,  etc, 
refer to the characteristics of radiation p l ,  etc, in the absorber, if all other radiation is 
absent. In the steady state with the T:  independent of time the rate of energy emitted 
or absorbed per unit area is, by (2.7) and (2.13), 

@, = B l ~ ~ j ( X ( ~ l ) ) 4 T ~ ' / 7 r .  (3.7) 
These results will now be generalised. 
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4. Balance equations in a more general context 

We now consider a more general situation. Suppose that for each j in (3.5) there exists 

(i) an effective temperature TF ; 
(ii) a temperature-independent quantity P, such that 

0, = PIT:" ; (4.1) 

0, = Y,U, VI, = YISI. (4.2) 

(iii) a temperature-independent coefficient y, such that 

These conditions hold for diluted black-body radiation by virtue of (2.13), (3.7), (2.7), 
(2.8), (2.11) and (2.12) with 

P, = B , ~ , W ( E , I ) ~ / ~ ~  (4.3) 

and y, = B,c/4.rrVI. 
A result analogous to (4.1) can be inferred for VI, using (3.6), whence 

4 = 1 d@,/T,* = + f , ( E , ) .  (4.4) 

Here f, is the 'constant' of integration. It will be assumed that VI, = 0 when TF = 0, 
whence f ,  = 0. 

Using (3.4), (4.1) and (4.4) in (3.3) 
,, 

W = 1 P p i a  r,*,z [ I -  ($T/ T,"la )I - Ps C4 ($T/ TT 11 - TSg, (4.5) 
I = 1  

an equation needed for efficiency calculations (see equation (6.9)). 

5. Significance of the equality of effective temperatures 

Although non-black-body radiations cannot be in equilibrium (e.g. § 2), one can get 
close to such a situation by considering the absorber to be in a steady state (k = S = 0) 
with 

* .  
Q =  W=S,=O. (5.1) 

One then has, by (3.1), (3.2) and (4.4), 

For one pump ( n  = 1) this approximation to equilibrium therefore has the property 

T;la = T,*. 

We shall call the situation specified by 
(5.4) 
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effective equilibrium. For this case (5.3) yields 

whence (5.2) implies via (3.1) that W = 0: in effective equilibrium the system cannot 
perform work. As the p’s are temperature-independent, the result (5.6) also holds away 
from effective equilibrium. 

For different degrees of dilution E , (  j = pia, . . . , pna; s) of the various types of 
radiation the pump and sink transfer rates in (3.1) and (3.2) will not in general balance: 

Such a balance can, however, be established by allowing the absolute temperatures to 
reach different values appropriate to the E,, higher temperatures being required for the 
greater dilution (smaller E ’ S ) .  One such scheme is to allow the efectiue temperatures to 
be the same. It is then easily seen using (5.6) that equalities hold in (5 .7) .  Effective 
equilibrium is always possible in principle by ensuring that the remaining relations (5.5) 
are satisfied in addition. 

6. Application to solar radiation 

The results of the previous sections will now be applied to the direct conversion of solar 
radiation into work. A model using three pumps will be used. Eliminating &,3a by (5.6), 
the rate of working per unit area of the absorber surface is, by (4.9,  

Each of the quantities in (6.1) will now be discussed for the solar radiation model. The 
sun will be assumed to emit black-body radiation of temperature Tat to be directly over 
the absorber and to subtend a solid angle w o  = n- sin2 6 where S is the half-angle of the 
cone with the sun as base and vertex at the earth’s surface. 

6.1. The sink radiation 

The absorber is assumed to be a grey body with absorptivity CY (independent of 
frequency) and with surface temperature T, emitting diluted black-body radiation into a 
solid angle 257. The dilution factor is given by E ,  = a and hence (2.14) and (4.3) give 

T: = T/X(a) @s/T,*4 = ~ a ( X ( a ) ) ~ .  (6.23) 

6.2. The first pump 

This is the direct part of solar radiation, photon density nd, say, incident on the absorber 
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at the earth’s surface. The photon density due to diffuse radiation when added to nd 
yields the total photon density Nd at the absorber. The photon density of solar radiation 
just outside the atmosphere is still larger and will be denoted by No.  This leads to a 
dilution factor t due to transmission through the atmosphere, and a dilution factor d 
which measures the fraction of direct photons at the absorber: 

t 3 N d / N s  d = nd/Nd ( O c d < l )  

As the radiation enters the absorber it suffers additional dilution by a factor a whence 
epla = atd and (2.14) and (4.3) give 

T,X1, = T z / X ( a t d )  P p l a  = (sin’ a ) c ~ a t d ( X ( a t d ) ) ~ .  (6 .4S)  

6.3. The second pump 

The second pump applies to the diffuse component of the solar radiation incident on the 
absorber with epZa = at (1-  d)(wo/477). The factor wo/47r accounts for dilution due to 
scattering from the small solid angle w o  into the full angle 477 during the conversion 
from direct to  diffuse radiation. The factor (1 - d )  is a measure of the proportion of the 
incident radiation which is diffuse (i.e. which is not direct). The relevant solid angle of 
absorption is 277, and (2.14) and (4.3) give 

6.4. The third pump 

The third pump applies to radiation, not necessarily diluted black body, from the 
ambient which is assumed to be such that the constraints of § 4 are met and that there is 
effective equilibrium between the sink radiation and the ambient radiation after 
absorption: 

(6.8) 

In other words, it is assumed that no work can be obtained by absorption of the ambient 
radiation alone. 

T,X3, = T,* = T / X ( a ) .  

By inserting (6.3), (6.5) and (6.7) into (5.6) one finds 

pp3a = c ~ a ( X ( a ) ) ~  - (sin’ S)~+cytd(X(atd) )~  - gat( 1 - d)wo(X[a t ( l  - d ) w o / 4 ~ ] ) ~ / 4 ~ .  

It depends on absorptivity a because ,Bp3a refers to ambient radiation after absorption ; 
the dependence on t and d occurs since the ambient radiation falling on the absorber 
should clearly depend on the amounts of direct and diffuse sunlight present. That the 
ambient radiation after absorption is not of diluted black-body form is clear by noting 
that pp3a is not of the form (6.3). 

We now define an efficiency for the conversion of solar power incident on the 
absorber into rate of working: 

= a  w ). LpIa + 
w 

rl = @)PI + o p z  (6.9) 
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Using (6.8) in (6.1) this becomes, noting S,>O,  

(6.10) 

which is plotted using (6.2)-(6.7) in figures 2 and 3 with T3 = 5760 K, T = 300 K and 
S = 4.65 x rad. 

7.  Discussion 

Figure 2 shows the expected increase in efficiency qo as the radiation in the absorber 
becomes less diluted (as at approaches unity). For fixed a and t, qo is expected to 
increase with d (the proportion of sunlight which is direct), and this is shown in figure 3 .  
In practice, LY and t will take values which are quite near unity. For example, some black 
laquers are now available with absorptivities in the region 0-96-0.98, and absorptivities 
of materials around 0.90 are common. Although atmospheric absorption is frequency 
dependent, a frequency-independent factor t is a fair approximation and is in any case 
required in so far as attention is confined to diluted black-body radiation. For a clear 
day t is typically 0.65, and it is of order 0.2 for a cloudy day. These numbers are 
obtained from figure 2 of Landsberg and Mallison (1976). Using these values for t, and 
a = 0.9, q o  as given by figure 2 gives 60.2% for diffuse sunlight and 82.8% for direct 
sunlight. 

at 

Figure 2. The maximum conversion efficiency qo, given by (6.10), is plotted as qo/a as a 
function of or, assuming Tz = 5760 K, T = 300 K, 6 = 4.65 x rad. o is the absorptivity 
of the absorber and t is the atmospheric transmission coefficient. d is the fraction of the 
incident photon density residing in direct radiation. A, d = 1 (direct sunlight); B, d = 0.3; C, 
d = 0 (diffuse sunlight). 
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0.1 0 2 0 3 0 4  0.5 0.6 0.7 0.8 0.9 
d 

Figure 3. Similar to figure 2, but qO/a is shown as a function of d. A, ut = 1; B, ut = lo-'; C, 
at = lo-*. 

The curves for d = 0 and d = 1 in figure 2 result from (6.10) when one of the pumps, 
either pump 1 (direct sunlight) or pump 2 (diffuse sunlight), is absent: 

V o k I f f  = A (T/T,*k, )-(Tf/T,*ka I4A (TIT,* ) A (T/T,*k,) (7.1) 

where k = 1 or 2 and A (x) = 1 - $x + 4x4. The approximate result is valid for cut > 
and hence for all practical situations. If the absorber is black (a = 1) and also t = 1 then 
by (6.4) and (6.6), (7.1) gives for direct and diffuse radiation respectively 

V O I  = A ( T I T 4  (7.2) 

7 0 2  = A (X(~oI4 . i r )  TI Tal. (7.3) 
(7.2) was first given by Landsberg and Mallison (1976); the proof was given by 
Landsberg (1977). Press (1976) obtained qol and an approximation to 7702 (he did not 
explicitly give the third term in the efficiency (7.3)). An approach to (7.2) from 
'availability' considerations is given in appendix 1. 

A further application of the results is to the conversion of radiation into plant free 
energy in photosynthesis, which is an equivalent form of energy to that described here 
as 'work'. One matter made quantitative by figure 2 is that decreasing light intensity 
(corresponding to decreasing t )  reduces the free-energy conversion efficiency, a point 
made by Duysens (1958) and confirmed by Spanner (1963). 

A distinction between maximal efficiencies in terms of the A function, involving an 
effective temperature T: = T s / X ( c ) ,  and a Carnot-type efficiency vC = 1 - TIT, 
involving another type of temperature, will become clearer if one notices that for a 
black absorber the latter is obtainable from (3.3) as 

77 = W/Op = 1 - (T'Pp/Qp) 

Os = 'Ps = 0 (no sink) 

(7.4) 
provided 

T = Qp/'Pp (7.5) 
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Just as T *  can be the absolute temperature (if E = l), so T can be the absolute 
temperature (in the normal Carnot cycle). In particular, consider the example of a 
pump consisting of a near-monochromatic beam of frequency v. Its (absolute) 
temperature T, may be defined by the Planck formula (say (2.1),  with E = l), and (7.4) 
and (7.5) yield 77 = 1 - T/T with 

) l h v ,  (7.6) ‘T - 1  = rr’ T i ’  -k(eh”lkrz - 1 )  ln(1 -e-’l‘lu/kr~ 

which for the case of low brightness ( k T ,  << h v )  simplifies to 

T I  T,. 17.7) 

Thus, in the limiting condition, T can be the monochromatic (absolute) temperature Tu 
of a beam. 

An alternative route to T,, occurs if a temperature 

7 2  3 &p/$p = dU/dS (7.8) 

(in terms of time derivatives) is required. For a monochromatic beam this yields “i2 = T,. 
A proof is possible via (2.1) to (2.6) and (2.8’), with E = 1, T = T,, and the integrals 
restricted to a very narrow frequency width, provided X f 0. This argument therefore 
requires, via (2.4),  Tu to be a function of time. 

In previous work (7.6) has been used in a Carnot efficiency by Bell (1964;  his T,) and 
Leontovich (1975).  On the other hand, T, has been used by Knox (1977;  his TR) in a 
Carnot efficiency, when ‘ T ~  would have been strictly correct. None the less, this use of Tu 
is justifiable in the sense of (7.7) since for red light (-680nm) and T , - 1 3 5 0 K ,  
hv/kT,, - 16. Its justification in the sense of (7.8) would not be satisfactory since his TR 
is a steady-state temperature. In the approximation 1 -$(Tcold/Thot) to the A function 
one should strictly use T *  (equation (2.13)),  which refers to a spectrum of radiation, 
rather than T, (cf Spanner 1963). A fuller discussion of previous work will be given 
shortly. 
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Appendix 1. Conversion efficiency from the ‘availability’ 

When considering a black absorber the quantity 770 as obtained in (7.2) is no longer a 
property of the absorber but of the radiation and ambient temperature alone. The 
absorber here performs a reversible conversion process. In general, the maximum 
possible useful work obtainable from a reversible process on  a system at temperature T I  
in the presence of an infinite environment of temperature To is called the ‘availability’ 
or ‘exergy’ of the system in that environment. This quantity is (Haywood 1974) 
A - Ao, where 

A U - TOS + P O  V 

Here U1,  S and V are the internal energy, entropy and volume respectively of the 
system, p o  is the environmental pressure and the suffices ‘1’ and ‘0’ refer to the system in 
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its initial state and in its dead state (i.e. equilibrium with the environment) respectively. 
We can obtain (7.2) by applying this notion to black-body radiation occupying a volume 
V at temperature TI. The availability of the radiation is 

A - A = V{aT;I - $UT:  T~ + faT:  } 

where a = 4 a / c  is a radiation constant. The ratio of the availability of the radiation to 
its initial internal energy is then 1 - $(To/ TI) + f( TO/ TJ4 = A (To/ TI). The expression 
also holds for a steady-flow (cyclic) conversion process (0 3 )  in which case we have 
77 = A ( To/T1)  as the conversion efficiency of the rate of input of internal energy into the 
rate of useful work output (cf (7.2)). Press (1976) used this argument implicitly to find 
the maximum conversion efficiency of solar radiation into work, and Petela (1964) 
obtained (7.2) by an exergy argument in the context of heat transfer. Petela also 
outlines a method to calculate the exergy of arbitrary radiation, which is similar to that 
which is followed in 90 2 and 3, although his results for diluted radiation are in error due 
to failure to include the factor X ( E )  in the entropy flux equation (his equation (7)).  

Appendix 2. An integral 

The integral 
m 

I -lo y 2 [ ( 1  + x )  ln(1 + x ) - x  In x ]  dy 

with x = € / ( e y  - 1) has the solution 

I = ( 2 + 6 ~ ) 5 ( 4 )  -2(  ( 1  
m 

- - ~ ) @ ( 1 - ~ , 4 ,  1 ) - E  W Q ( l - 6 ,  1 , n ) )  
n = ~  n 

where (Bateman 1953) 
m 

O(z ,s ,  v)= 1 z " / ( v + n ) '  
n = O  

and 

is the zeta function of Riemann. For small E (0 < E < 0.1) (A. 1) simplifies to 

I = E (  65(4)  + 25(3) - 1 n-'5(3,  n + 1)) + 2 5 ( 3 ) ~  In(€-') + e2(5(2)  - 5(3)) 

where 

T 

n = l  

cc 

((k, v )  = 1 ( n  + v ) - ~  
n = O  

is the generalised zeta function. Using tabulated values of the zeta function, (A.4) leads 
via (2.9) to 

( A . 6 )  X ( E )  = 0,9652 + 0.2777 In(€-') + 0.051 16 
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for O <  E C0.1. Press (1976) obtained the first two terms in (A.6) by solving I 
numerically, but did not have the general result (A.1). 

For E = 1, ( A l )  simplifies to 

I = 85(4) = &r4, (A.7) 
the result for black-body radiation. 
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